Exact solutions of Schrödinger's equation for translation-invariant harmonic matter

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12941
(http://iopscience.iop.org/0305-4470/12/6/525)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:49

Please note that terms and conditions apply.

Corrigenda

On the most probable path for diffusive processes

Langouche F, Roekaerts D and Tirapegui E 1978 J. Phys. A: Math. Gen. 11 L 263-8
On p L264 the first line after equation (3) should read: 'The technique of Langouche et al (1978c)...'

The potential given after equation (6) should read

$$
V(\boldsymbol{q})=\frac{1}{2} \sum_{\mu=1}^{N}\left[A^{\mu}(\boldsymbol{q})^{2}-\partial_{\mu} A^{\mu}(\boldsymbol{q})\right]
$$

In the fourth line of $p \mathrm{~L} 267$, the reference after equation (16) should be Langouche et al (1978b).

Equation (20) should end as:

$$
\begin{equation*}
\left.\ldots V\left(y_{1-1}\right)\right] . \tag{20}
\end{equation*}
$$

The third line after equation (20) should read:

$$
\left.\boldsymbol{x}_{i-1}^{(1 / 2)}\right)+\mathrm{O}\left(\epsilon^{3 / 2}\right)=\Delta_{j}^{\mu} f^{\mu}\left(t_{i-1}, \boldsymbol{x}_{i-1}^{(1 / 2)}\right)
$$

In the second line of pL268 the reference should be to equation (7) rather than (11).

In the references Leiden should be replaced by Leuven.

Exact solutions of Schrödinger's equation for translation-invariant harmonic matter

 Hall R L 1978 J. Phys. A: Math. Gen. 11 1235-40In equations (3) and (7) the inter-centre-of-Mass kinetic energy term is too large by a factor of 2 and should read

$$
\frac{1}{2 N}\left(\frac{N_{2}}{m_{1}}+\frac{N_{1}}{m_{2}}\right) \pi^{2}
$$

Consequently in the formula for the ground-state energy E_{0} (i.e. equation (8)) the third term should be divided by $\sqrt{2}$ giving

$$
a \hbar k_{3} 2^{-1 / 2}\left(\frac{N_{2}}{m_{1}}+\frac{N_{1}}{m_{2}}\right)^{1 / 2} .
$$

